Back to Search Start Over

Holographic quantum algorithms for simulating correlated spin systems

Authors :
David Hayes
Joan Dreiling
Andrew C. Potter
Michael Foss-Feig
Caroline Figgatt
Steven Moses
John Gaebler
Juan Pino
Publication Year :
2020

Abstract

We present a suite of "holographic" quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use, in order to simulate a $D$-dimensional spin system using only a ($D$-1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically in the amount of entanglement present in the simulated state. Ground states can either be directly prepared from a known MPS representation, or obtained via a holographic variational quantum eigensolver (holoVQE). Dynamics of MPS under local Hamiltonians for time $t$ can also be simulated with an additional (multiplicative) ${\rm poly}(t)$ overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS with exponentially large bond-dimension, including ground-states of 2D and 3D systems, or thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer, achieving within $10(3)\%$ of the exact ground-state energy of an infinite chain using only a pair of qubits.<br />13 pages, 9 figures

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....5e5528715ac385073e955a5e4e56f370