Back to Search Start Over

Surface convection and red giants radii measurements

Authors :
Peter H. Hauschildt
Pierre Kervella
L. Piau
Sami Dib
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Haute résolution angulaire en astrophysique
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Astrophysics Group
Blackett Laboratory
Imperial College London-Imperial College London
Hamburger Sternwarte, Universität Hamburg
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2011, 526, pp.100. ⟨10.1051/0004-6361/201014442⟩
Publication Year :
2010

Abstract

The phenomenological models of convection use characteristic length scales they do not determine but that are chosen to fit solar or stellar observations. We investigate if changes of these length scales are required between the Sun and low mass stars on the red giant branch (RGB). The question is addressed jointly in the frameworks of the mixing length theory and of the full spectrum of turbulence model. For both models, the convective length scale is assumed to be a fixed fraction of the local pressure scale height. We use constraints coming from the observed effective temperatures and linear radii independently. We rely on a sample of 38 nearby giants and subgiants for which surface temperatures and luminosities are known accurately and the radii are determined through interferometry to better than 10%. For the few cases where the stellar masses were determined by asteroseismological measurements, we computed dedicated models. First we calibrate the solar models. Then, with the same physics, we compute RGB models for masses between 0.9 Mo and 2.5 Mo and metallicities ranging from $\rm [Fe/H]=-0.34$ to solar. The evolution is followed up to 1000 Lo. A special attention is given to the opacities and to the non grey atmosphere models used as boundary conditions for which the model of convection is the same as in the interior. We find that for both the mixing length theory and the full spectrum of turbulence model the characteristic solar length scale for convection has to be slightly reduced to fit the lower edge of the observed RGB. The corresponding models also better match the expected mass distribution on the RGB and are in better agreement to the seismic constraints. These results are robust whether effective temperatures determined spectroscopically or radii determined interferometrically are used.<br />Accepted to Astronomy and Astrophysics 15 pages, 10 figures, 5 tables

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2011, 526, pp.100. ⟨10.1051/0004-6361/201014442⟩
Accession number :
edsair.doi.dedup.....5e13bb208923cf43c4eb2ab81a6fe98f
Full Text :
https://doi.org/10.1051/0004-6361/201014442⟩