Back to Search Start Over

Well-Quasi-Order of Relabel Functions

Authors :
Michaël Rao
Stéphan Thomassé
Jean Daligault
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Source :
Order, Order, 2010, 27, pp.301-315. ⟨10.1007/s11083-010-9174-0⟩, Order, Springer Verlag, 2010, 27, pp.301-315. ⟨10.1007/s11083-010-9174-0⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; We define NLC Fk to be the restriction of the class of graphs NLC k , where relabelling functions are exclusively taken from a set F of functions from {1,...,k} into {1,...,k}. We characterize the sets of functions F for which NLC Fk is well-quasi-ordered by the induced subgraph relation ≤ i . Precisely, these sets F are those which satisfy that for every f,g∈F , we have Im(f ∘ g) = Im(f) or Im(g ∘ f) = Im(g). To obtain this, we show that words (or trees) on F are well-quasi-ordered by a relation slightly more constrained than the usual subword (or subtree) relation. A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellings into n colors forms a well-quasi-order under ≤ i , where ≤ i respects labels. Pouzet (C R Acad Sci, Paris Sér A-B 274:1677-1680, 1972) conjectured that a 2-well-quasi-ordered class closed under induced subgraph is in fact n-well-quasi-ordered for every n. A possible approach would be to characterize the 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such a class is always included in some well-quasi-ordered NLC Fk for some family F . This would imply Pouzet's conjecture.

Details

Language :
English
ISSN :
16771680, 01678094, and 15729273
Database :
OpenAIRE
Journal :
Order, Order, 2010, 27, pp.301-315. ⟨10.1007/s11083-010-9174-0⟩, Order, Springer Verlag, 2010, 27, pp.301-315. ⟨10.1007/s11083-010-9174-0⟩
Accession number :
edsair.doi.dedup.....5dddbf9b4adfad138a3c55fbd93e0bc6
Full Text :
https://doi.org/10.1007/s11083-010-9174-0⟩