Back to Search Start Over

The local wave phenomenon in the quintic nonlinear Schrödinger equation by numerical methods

Authors :
Yaning Tang
Zaijun Liang
Wenxian Xie
Source :
Nonlinear Dynamics. 108:1547-1559
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

The nonlinear Schrodinger hierarchy has a wide range of applications in modeling the propagation of light pulses in optical fibers. In this paper, we focus on the integrable nonlinear Schrodinger (NLS) equation with quintic terms, which play a prominent role when the pulse duration is very short. First, we investigate the spectral signatures of the spatial Lax pair with distinct analytical solutions and their periodized wavetrains by Fourier oscillatory method. Then, we numerically simulate the wave evolution of the quintic NLS equation from different initial conditions through the symmetrical split-step Fourier method. We find many localized high-peak structures whose profiles are very similar to the analytical solutions, and we analyze the formation of rouge waves (RWs) in different cases. These results may be helpful to understand the excitation of nonlinear waves in some nonlinear fields, such as optical fibers, oceanography and so on.

Details

ISSN :
1573269X and 0924090X
Volume :
108
Database :
OpenAIRE
Journal :
Nonlinear Dynamics
Accession number :
edsair.doi.dedup.....5ddc3612f8635d1b8e8cc75d0f9637a5