Back to Search Start Over

Retrofitting of pressurized sand traps in hydropower plants

Authors :
Josef Schneider
Ola Haugen Havrevoll
Gerald Zenz
Wolfgang Richter
Kaspar Vereide
Gasper Mauko
Source :
Water, Volume 13, Issue 18, Water, Vol 13, Iss 2515, p 2515 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

Unlined pressure tunnels in sound rock, combined with pressurized sand traps at the downstream end, allow for low-cost construction of hydropower tunnel systems. This design concept is utilized in hydropower plants across the world. Currently, many such power plants are being upgraded with higher installed capacity, which may result in challenges with the sand trap efficiency. A physical scale model test, accompanied by 3D CFD simulations of a case study pressurized sand trap, has been studied for economic retrofitting. The geometric model scale is 1:36.67 while the velocity scale and sediment scale are 1:1 (same average flow velocity and sediment size in model and prototype). This is currently an uncommon scaling approach but with several advantages, as presented in this paper. Various options for retrofitting were investigated. A combined structure of ramp and ribs was found to significantly improve the sediment trap efficiency. The main novelties from this work are the proposed design of the combined ramp and rib structure. Secondary results include an efficient setup for physical scale models of pressurized sand traps and a methodology that combines the benefits of 3D CFD simulations with physical scale models testing for sand trap engineering and design.

Details

Language :
English
ISSN :
20734441
Database :
OpenAIRE
Journal :
Water
Accession number :
edsair.doi.dedup.....5d7ea2887b86102ee1f5fdbbf5874a13
Full Text :
https://doi.org/10.3390/w13182515