Back to Search Start Over

Reactive oxygen species stress increases accumulation of tyrosyl-DNA phsosphodiesterase 1 within mitochondria

Authors :
Cornelius F. Boerkoel
Kunho Choi
Hok Khim Fam
Lauren Fougner
Chinten James Lim
Source :
Scientific Reports, Vol 8, Iss 1, Pp 1-14 (2018), Scientific Reports
Publication Year :
2018
Publisher :
Nature Publishing Group, 2018.

Abstract

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a nuclear and mitochondrial protein that in nuclei and in vitro repairs blocked 3′ DNA termini such as 3′ phosphotyrosine conjugates resulting from stalling of topoisomerase I-DNA intermediates. Its mutation also causes spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Because Tdp1 colocalizes with mitochondria following oxidative stress, we hypothesized that Tdp1 repairs mitochondrial DNA (mtDNA) and that mtDNA damage mediates entry of Tdp1 into the mitochondria. To test this, we used S. cerevisiae mutants, cultured mouse and human cells, and a Tdp1 knockout mouse. H2O2- and rotenone-induced cellular and intramitochondrial reactive oxygen species (ROS) activated oxidant-responsive kinases P38 and ERK1, and the translocation of Tdp1 from the nucleus to the mitochondria via the TIM/TOM complex. This translocation occurred independently of mtDNA. Within the mitochondria, Tdp1 interacted with Ligase III and reduced mtDNA mutations. Tdp1-deficient tissues had impaired mitochondrial respiration and decreased viability. These observations suggest that Tdp1 maintains mtDNA integrity and support the hypothesis that mitochondrial dysfunction contributes to the pathology of SCAN1.

Details

Language :
English
ISSN :
20452322
Volume :
8
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....5d6ac2565c994c81b49a8d83d58c9c8c
Full Text :
https://doi.org/10.1038/s41598-018-22547-8