Back to Search Start Over

Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity

Authors :
Tamara Kolbe
Thierry Labasque
Jean Marçais
Jean-Raynald de Dreuzy
Kevin Bishop
Swedish University of Agricultural Sciences (SLU)
Technishe Universität Bergakademie Freiberg (TU Bergakademie Freiberg)
Institut de Physique du Globe de Paris (IPGP)
Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Riverly (Riverly)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Géosciences Rennes (GR)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
Observatoire des Sciences de l'Univers de Rennes (OSUR)
Swedisch University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Institut de Physique du Globe de Paris (IPGP (UMR_7154))
Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
RiverLy - Fonctionnement des hydrosystèmes (RiverLy)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Hydrological Processes, Hydrological Processes, Wiley, 2020, 34 (10), pp.2176-2189. ⟨10.1002/hyp.13753⟩, Hydrological Processes, 2020, 34 (10), pp.2176-2189. ⟨10.1002/hyp.13753⟩
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

International audience; Large proportions of rain water and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time varying processes. CFC‐based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from 9 different wells with depths of 2 m to 18 m close to the stream network. Immediately below the water table, CFC‐based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age‐depth relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.

Details

ISSN :
10991085 and 08856087
Volume :
34
Database :
OpenAIRE
Journal :
Hydrological Processes
Accession number :
edsair.doi.dedup.....5d516c2ff777e6d07f6fc69856306e2e