Back to Search Start Over

Finding interest groups from Twitter lists

Authors :
Céline Robardet
Jean Savinien
Mohamed Benabdelkrim
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
SAC '20: The 35th ACM/SIGAPP Symposium on Applied Computing, SAC '20: The 35th ACM/SIGAPP Symposium on Applied Computing, Mar 2020, Brno Czech Republic, France. pp.1885-1887, ⟨10.1145/3341105.3374077⟩, SAC
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Twitter lists enable users of the social network to organize people they follow into groups of interest (e.g. politicians or journalists they like, favorite artists or athletes, authoritative figures in a given field, and so on). For the analyst, lists are a means of access to the structure of interactions between Twitter users and can be used to identify main actors of a field of interest. In this work, we introduce a methodology for constructing an edge-attributed multilayer network of Twitter users based on their membership to Twitter lists. We propose and validate a new approach that identifies local communities of users and their common interests from the constructed graph. We provide evidences that our method performs in a better way than global community detection approaches, and faster with as good results as competitive local methods.

Details

Language :
English
Database :
OpenAIRE
Journal :
SAC '20: The 35th ACM/SIGAPP Symposium on Applied Computing, SAC '20: The 35th ACM/SIGAPP Symposium on Applied Computing, Mar 2020, Brno Czech Republic, France. pp.1885-1887, ⟨10.1145/3341105.3374077⟩, SAC
Accession number :
edsair.doi.dedup.....5d36e081898ddfa9d0d1cf50d6cfb5ca
Full Text :
https://doi.org/10.1145/3341105.3374077⟩