Back to Search Start Over

Approximate Verification of the Symbolic Dynamics of Markov Chains

Authors :
Sundararaman Akshay
Blaise Genest
Manindra Agrawal
P. S. Thiagarajan
Indian Institute of Technology Kanpur (IIT Kanpur)
Department of Computer Science and Engineering [Bombay]
Indian Institute of Technology Bombay (IIT Bombay)
SUpervision of large MOdular and distributed systems (SUMO)
Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LANGAGE ET GÉNIE LOGICIEL (IRISA-D4)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
School of computing [Singapore] (NUS)
National University of Singapore (NUS)
ANR-13-BS02-0011,Stoch-MC,Modèles stochastiques: passage à l'échelle pour le Model Checking(2013)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of the ACM (JACM), Journal of the ACM (JACM), Association for Computing Machinery, 2015, 62 (1), pp.34-65. ⟨10.1145/2629417⟩, Journal of the ACM (JACM), 2015, 62 (1), pp.34-65. ⟨10.1145/2629417⟩, LICS
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

A finite-state Markov chain M can be regarded as a linear transform operating on the set of probability distributions over its node set. The iterative applications of M to an initial probability distribution μ 0 will generate a trajectory of probability distributions. Thus, a set of initial distributions will induce a set of trajectories. It is an interesting and useful task to analyze the dynamics of M as defined by this set of trajectories. The novel idea here is to carry out this task in a symbolic framework. Specifically, we discretize the probability value space [0,1] into a finite set of intervals I = { I 1 , I 2 ,..., I m }. A concrete probability distribution μ over the node set {1, 2,..., n } of M is then symbolically represented as D , a tuple of intervals drawn from I where the i th component of D will be the interval in which μ( i ) falls. The set of discretized distributions D is a finite alphabet. Hence, the trajectory, generated by repeated applications of M to an initial distribution, will induce an infinite string over this alphabet. Given a set of initial distributions, the symbolic dynamics of M will then consist of a language of infinite strings L over the alphabet D . Our main goal is to verify whether L meets a specification given as a linear-time temporal logic formula φ. In our logic, an atomic proposition will assert that the current probability of a node falls in the interval I from I . If L is an ω-regular language, one can hope to solve our model-checking problem (whether L ⊧ φ?) using standard techniques. However, we show that, in general, this is not the case. Consequently, we develop the notion of an ϵ-approximation, based on the transient and long-term behaviors of the Markov chain M . Briefly, the symbolic trajectory ξ' is an ϵ-approximation of the symbolic trajectory ξ iff (1) ξ' agrees with ξ during its transient phase; and (2) both ξ and ξ' are within an ϵ-neighborhood at all times after the transient phase. Our main results are that one can effectively check whether (i) for each infinite word in L , at least one of its ϵ-approximations satisfies the given specification; (ii) for each infinite word in L , all its ϵ-approximations satisfy the specification. These verification results are strong in that they apply to all finite state Markov chains.

Details

Language :
English
ISSN :
00045411 and 1557735X
Database :
OpenAIRE
Journal :
Journal of the ACM (JACM), Journal of the ACM (JACM), Association for Computing Machinery, 2015, 62 (1), pp.34-65. ⟨10.1145/2629417⟩, Journal of the ACM (JACM), 2015, 62 (1), pp.34-65. ⟨10.1145/2629417⟩, LICS
Accession number :
edsair.doi.dedup.....5d34283887fe3a69f824596ce6dfc598