Back to Search Start Over

Particle breakage of sand subjected to friction and collision in drum tests

Authors :
Tao Zhao
M. Qasim Jan
Fangwei Yu
Li-jun Su
Qi-jun Xie
Chonglei Zhang
Source :
Journal of Rock Mechanics and Geotechnical Engineering, Vol 13, Iss 2, Pp 390-400 (2021)
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision, by a number of drum tests on granular materials (silica sand No. 3 and ceramic balls) to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand. Particle breakage increased in up convexity with increasing duration of drum tests, but increased linearly with increasing number of balls. Particle breakage showed an increase, followed by a decrease while increasing the amount of sand. There may be existence of a characteristic amount of sand causing a maximum particle breakage. Friction tests caused much less particle breakage than collision tests did. Friction and collision resulted in different mechanisms of particle breakage, mainly by abrasion for friction and by splitting for collision. The fines content increased with increasing relative breakage. Particle breakage in the friction tests (abrasion) resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests (splitting). For the collision tests, the fines content showed a decrease followed by an increase as the amount of sand increased, whereas it increased in up convexity with increasing number of balls. The characteristic grain sizes D 10 and D 30 decreased in down convexity with increasing relative breakage, which could be described by a natural exponential function. However, the characteristic grain sizes D 50 and D 60 decreased linearly while increasing the relative breakage. In addition, the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.

Details

ISSN :
16747755
Volume :
13
Database :
OpenAIRE
Journal :
Journal of Rock Mechanics and Geotechnical Engineering
Accession number :
edsair.doi.dedup.....5d2f14beb4113f53c721b80d8470807a
Full Text :
https://doi.org/10.1016/j.jrmge.2020.08.004