Back to Search Start Over

Expression, Activation, and Processing of the Recombinant Snake Venom Metalloproteinase, Pro-Atrolysin E

Authors :
Ken-ichi Shimokawa
Jay W. Fox
Xiao-Ming Wang
Li-Guo Jia
Source :
Archives of Biochemistry and Biophysics. 335:283-294
Publication Year :
1996
Publisher :
Elsevier BV, 1996.

Abstract

The expression in human embryonic kidney (HEK 293) cells of the recombinant zymogen form (pro-) of the Crotalus atrox hemorrhagic metalloproteinase, atrolysin E, is presented. The nascent protein is comprised of pre-, pro-, proteinase-, spacer-, and disintegrin domains. The biochemical characterization of the recombinant zymogen is described along with its activation by C. atrox crude venom and other hemorrhagic toxins. Unlike the zymogen forms of the matrix metalloproteinases, pro-atrolysin E is not activated by the organomercurial, (4-aminophenyl)mercuric acetate. Pro-atrolysin E could be enzymatically activated by C. atrox crude venom, PMSF-inhibited crude venom, atrolysin A, and atrolysin E itself. There is no evidence of autoactivation. Using two polyclonal antibodies directed against the proteinase domain and the disintegrin domain of atrolysin E, the proteolytic processing of the recombinant protein by atrolysin A was followed. The first cleavage of pro-atrolysin E by atrolysin A removes the pro-domain. The second proteolysis step removes the disintegrin domain to produce the proteinase/spacer protein. These studies have identified potential activators of snake venom pro-metalloproteinases in crude venom and suggest a general scheme for the activation and processing of venom pro-metalloproteinases by the endogenous, active metalloproteinases.

Details

ISSN :
00039861
Volume :
335
Database :
OpenAIRE
Journal :
Archives of Biochemistry and Biophysics
Accession number :
edsair.doi.dedup.....5d0fc4414e97162da0fa8f03b5d68991
Full Text :
https://doi.org/10.1006/abbi.1996.0509