Back to Search Start Over

Generative Visual Dialogue System via Adaptive Reasoning and Weighted Likelihood Estimation

Authors :
Zhang, Heming
Ghosh, Shalini
Heck, Larry
Walsh, Stephen
Zhang, Junting
Zhang, Jie
Kuo, C. -C. Jay
Publication Year :
2019

Abstract

The key challenge of generative Visual Dialogue (VD) systems is to respond to human queries with informative answers in natural and contiguous conversation flow. Traditional Maximum Likelihood Estimation (MLE)-based methods only learn from positive responses but ignore the negative responses, and consequently tend to yield safe or generic responses. To address this issue, we propose a novel training scheme in conjunction with weighted likelihood estimation (WLE) method. Furthermore, an adaptive multi-modal reasoning module is designed, to accommodate various dialogue scenarios automatically and select relevant information accordingly. The experimental results on the VisDial benchmark demonstrate the superiority of our proposed algorithm over other state-of-the-art approaches, with an improvement of 5.81% on recall@10.<br />IJCAI 2019

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....5d0501339b1410cba965e5e6f62217c7