Back to Search
Start Over
Selected Applications of Linear Semi-Infinite Systems Theory
- Source :
- RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
- Publication Year :
- 2020
- Publisher :
- Springer Nature, 2020.
-
Abstract
- In this paper we, firstly, review the main known results on systems of an arbitrary (possibly infinite) number of weak linear inequalities posed in the Euclidean space Rn (i.e., with n unknowns), and, secondly, show the potential power of this theoretical tool by developing in detail two significant applications, one to computational geometry: the Voronoi cells, and the other to mathematical analysis: approximate subdifferentials, recovering known results in both fields and proving new ones. In particular, this paper completes the existing theory of farthest Voronoi cells of infinite sets of sites by appealing to well-known results on linear semi-infinite systems. This research was partially supported by PGC2018-097960-B-C22 of the Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI), and the European Regional Development Fund (ERDF); by CONICET, Argentina, Res D No 4198/17; and by Universidad Nacional de Cuyo, Secretaría de Investigación, Internacionales y Posgrado (SIIP), Res. 3922/19-R, Cod.06/D227, Argentina.
- Subjects :
- Infinite set
Linear inequality systems
021103 operations research
Semi-infinite
Euclidean space
General Mathematics
010102 general mathematics
0211 other engineering and technologies
02 engineering and technology
Computational geometry
01 natural sciences
Power (physics)
ε-subdifferentials
Linear inequality
Systems theory
Voronoi cells
Estadística e Investigación Operativa
Applied mathematics
0101 mathematics
Voronoi diagram
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
- Accession number :
- edsair.doi.dedup.....5cf6ebb240fd0677f8de363ddfb8df62