Back to Search
Start Over
Crystal structure of Diedel, a marker of the immune response of Drosophila melanogaster
- Source :
- PLoS ONE, PLoS ONE, Public Library of Science, 2012, 7 (3), pp.e33416. ⟨10.1371/journal.pone.0033416⟩, PLoS ONE, Vol 7, Iss 3, p e33416 (2012)
- Publication Year :
- 2011
-
Abstract
- International audience; BACKGROUND: The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues with 10 cysteines. METHODOLOGY/PRINCIPAL FINDINGS: We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its own signal peptide and solved its crystal structure at 1.15 Å resolution by SIRAS using an iodo derivative. Diedel is composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel β-sheet covered by an α-helix and displays a ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae and Ascoviridae families. CONCLUSION/SIGNIFICANCE: Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small family of proteins present in drosophilids, aphids and DNA viruses infecting lepidopterans. Diedel is an extracellular protein composed of two sub-domains. Two special structural features (hydrophobic surface patch and cis/trans conformation for proline 52) may indicate a putative interaction site, and support an extra cellular signaling function for Diedel, which is in accordance with its proposed role as negative regulator of the JAK/STAT signaling pathway.
- Subjects :
- MESH: Signal Transduction
Protein Folding
lcsh:Medicine
Crystallography, X-Ray
Biochemistry
MESH: Protein Structure, Tertiary
Protein structure
Molecular Cell Biology
Melanogaster
MESH: Janus Kinases
Pathology
Drosophila Proteins
MESH: Animals
lcsh:Science
Genetics
0303 health sciences
Multidisciplinary
biology
Schneider 2 cells
030302 biochemistry & molecular biology
MESH: Transcription Factors
Animal Models
Cell biology
STAT Transcription Factors
Drosophila melanogaster
Medicine
MESH: Aphids
Drosophila Protein
Signal Transduction
Research Article
Signal peptide
MESH: Drosophila Proteins
MESH: Protein Folding
Immunology
Sequence alignment
MESH: Drosophila melanogaster
Molecular Genetics
03 medical and health sciences
Model Organisms
Diagnostic Medicine
Animals
[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology
Binding site
Biology
030304 developmental biology
Janus Kinases
lcsh:R
Immunity
Proteins
MESH: STAT Transcription Factors
biology.organism_classification
MESH: Crystallography, X-Ray
Protein Structure, Tertiary
Aphids
lcsh:Q
Clinical Immunology
Transcription Factors
General Pathology
Subjects
Details
- ISSN :
- 19326203
- Volume :
- 7
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- PloS one
- Accession number :
- edsair.doi.dedup.....5ce617a139bfc71ceda8ecd198c23026