Back to Search Start Over

Monophyletic group of unclassified γ-Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode

Authors :
Frédéric Barrière
Matthieu Picot
Cees J.N. Buisman
Nico Boon
Jan Arends
Anton Hartmann
Tina Sieper
Michael Rothballer
Michael Schmid
David P.B.T.B. Strik
Helmholtz Zentrum München = German Research Center for Environmental Health
Institut des Sciences Chimiques de Rennes (ISCR)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Lab Microbial Ecol & Technol LabMET
Universiteit Gent = Ghent University (UGENT)
Wageningen University and Research [Wageningen] (WUR)
This research is supported by funding from the European Union's Seventh Framework Programme FP7/2007–2013 under Grant Agreement No. 226532
Helmholtz-Zentrum München (HZM)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Universiteit Gent = Ghent University [Belgium] (UGENT)
Shleev, Sergey
Gorton, Lo
Bergel, Alain
Source :
Bioelectrochemistry, 106, 167-176, Bioelectrochemistry, Bioelectrochemistry, 2015, 106 (Part A), pp.167-176. ⟨10.1016/j.bioelechem.2015.04.004⟩, Bioelectrochemistry 106 (2015), Bioelectrochemistry, Elsevier, 2015, 106 (Part A), pp.167-176. ⟨10.1016/j.bioelechem.2015.04.004⟩, BIOELECTROCHEMISTRY
Publication Year :
2015

Abstract

International audience; Several mixed microbial communities have been reported to show robust bioelectrocatalysis of oxygen reduction over time at applicable operation conditions. However, clarification of electron transfer mechanism(s) and identification of essential micro-organisms have not been realised. Therefore, the objective of this study was to shape oxygen reducing biocathodes with different microbial communities by means of surface modification using the electrochemical reduction of two different diazonium salts in order to discuss the relation of microbial composition and performance. The resulting oxygen reducing mixed culture biocathodes had complex bacterial biofilms variable in size and shape as observed by confocal and electron microscopy. Sequence analysis of ribosomal 16S rDNA revealed a putative correlation between the abundance of certain microbiota and biocathode performance. The best performing biocathode developed on the unmodified graphite electrode and reached a high current density for oxygen reducing biocathodes at neutral pH (0.9A/m(2)). This correlated with the highest domination (60.7%) of a monophyletic group of unclassified γ-Proteobacteria. These results corroborate earlier reports by other groups, however, higher current densities and higher presence of these unclassified bacteria were observed in this work. Therefore, members of this group are likely key-players for highly performing oxygen reducing biocathodes.[on SciFinder (R)]

Details

Language :
English
ISSN :
15675394
Database :
OpenAIRE
Journal :
Bioelectrochemistry, 106, 167-176, Bioelectrochemistry, Bioelectrochemistry, 2015, 106 (Part A), pp.167-176. ⟨10.1016/j.bioelechem.2015.04.004⟩, Bioelectrochemistry 106 (2015), Bioelectrochemistry, Elsevier, 2015, 106 (Part A), pp.167-176. ⟨10.1016/j.bioelechem.2015.04.004⟩, BIOELECTROCHEMISTRY
Accession number :
edsair.doi.dedup.....5cb439cf92c12ac4ef9b1581e531565e