Back to Search Start Over

Establishing key research questions for the implementation of artificial intelligence in colonoscopy : a modified Delphi method

Authors :
Pietro Valdastri
Yuichi Mori
Masashi Misawa
Michael F. Byrne
Pu Wang
Michael B. Wallace
James E. East
Aymeric Histace
Alessandro Repici
Shin-ei Kudo
Tyler M. Berzin
William E. Karnes
Peng Jen Chen
Laurence Lovat
Daniel S. Elson
Jorge Bernal
John T. Anderson
Rajvinder Singh
Omer F. Ahmad
Raf Bisschops
Danail Stoyanov
Tom Eelbode
Suryakanth R. Gurudu
Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051)
Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
ASTRE [Cergy-Pontoise]
Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Imperial College Healthcare NHS Trust- BRC Funding
Cancer Research UK
Source :
Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Endoscopy, Endoscopy, Thieme Publishing, 2020, 53 (9), pp.893-901. ⟨10.1055/a-1306-7590⟩, Endoscopy, vol 53, iss 9
Publication Year :
2020

Abstract

Background Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. Methods An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. Results The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. Conclusions This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.

Details

Language :
English
ISSN :
0013726X and 14388812
Database :
OpenAIRE
Journal :
Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Endoscopy, Endoscopy, Thieme Publishing, 2020, 53 (9), pp.893-901. ⟨10.1055/a-1306-7590⟩, Endoscopy, vol 53, iss 9
Accession number :
edsair.doi.dedup.....5c456dd8e5fcc3347ac90b5e96234d3b