Back to Search Start Over

INVARIANCE TIMES *

Authors :
Crépey, Stéphane
Song, Shiqi
Laboratoire de Mathématiques et Modélisation d'Evry
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques et Modélisation d'Evry (LaMME)
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS)
Source :
Ann. Probab. 45, no. 6B (2017), 4632-4674
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations $\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$, the process $X^{\theta-}$ ($X$ stopped ``right before $\theta$'') is a $\mathbb{G}$ semimartingale.Given a positive constant $T$, we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale. We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.

Details

Language :
English
ISSN :
46324674
Database :
OpenAIRE
Journal :
Ann. Probab. 45, no. 6B (2017), 4632-4674
Accession number :
edsair.doi.dedup.....5c2316ecb3ac6ea402272027bf3dd60e