Back to Search
Start Over
INVARIANCE TIMES *
- Source :
- Ann. Probab. 45, no. 6B (2017), 4632-4674
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations $\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$, the process $X^{\theta-}$ ($X$ stopped ``right before $\theta$'') is a $\mathbb{G}$ semimartingale.Given a positive constant $T$, we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale. We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.
- Subjects :
- Statistics and Probability
050208 finance
05 social sciences
measure change
Computational Finance (q-fin.CP)
01 natural sciences
[QFIN.CP]Quantitative Finance [q-fin]/Computational Finance [q-fin.CP]
FOS: Economics and business
mathematical finance
010104 statistics & probability
Quantitative Finance - Computational Finance
Mathematics::Probability
Random time
60G07
0502 economics and business
enlargement of filtration
60G44
Pricing of Securities (q-fin.PR)
0101 mathematics
Statistics, Probability and Uncertainty
Quantitative Finance - Pricing of Securities
Subjects
Details
- Language :
- English
- ISSN :
- 46324674
- Database :
- OpenAIRE
- Journal :
- Ann. Probab. 45, no. 6B (2017), 4632-4674
- Accession number :
- edsair.doi.dedup.....5c2316ecb3ac6ea402272027bf3dd60e