Back to Search
Start Over
A deep learning algorithm for detecting acute myocardial infarction
- Source :
- EuroIntervention
- Publication Year :
- 2021
- Publisher :
- Europa Digital & Publishing, 2021.
-
Abstract
- BACKGROUND: Delayed diagnosis or misdiagnosis of acute myocardial infarction (AMI) is not unusual in daily practice. Since a 12-lead electrocardiogram (ECG) is crucial for the detection of AMI, a systematic algorithm to strengthen ECG interpretation may have important implications for improving diagnosis. AIMS: We aimed to develop a deep learning model (DLM) as a diagnostic support tool based on a 12-lead electrocardiogram. METHODS: This retrospective cohort study included 1,051/697 ECGs from 737/287 coronary angiogram (CAG)-validated STEMI/NSTEMI patients and 140,336 ECGs from 76,775 non-AMI patients at the emergency department. The DLM was trained and validated in 80% and 20% of these ECGs. A human-machine competition was conducted. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the performance of the DLM. RESULTS: The AUC of the DLM for STEMI detection was 0.976 in the human-machine competition, which was significantly better than that of the best physicians. Furthermore, the DLM independently demonstrated sufficient diagnostic capacity for STEMI detection (AUC=0.997; sensitivity, 98.4%; specificity, 96.9%). Regarding NSTEMI detection, the AUC of the combined DLM and conventional cardiac troponin I (cTnI) increased to 0.978, which was better than that of either the DLM (0.877) or cTnI (0.950). CONCLUSIONS: The DLM may serve as a timely, objective and precise diagnostic decision support tool to assist emergency medical system-based networks and frontline physicians in detecting AMI and subsequently initiating reperfusion therapy.
- Subjects :
- Receiver operating characteristic
business.industry
Troponin I
Myocardial Infarction
Retrospective cohort study
Emergency department
Coronary angiogram
medicine.disease
Sensitivity and Specificity
Electrocardiography
Deep Learning
Reperfusion therapy
Clinical Research
Daily practice
medicine
Humans
cardiovascular diseases
Myocardial infarction
Cardiology and Cardiovascular Medicine
business
Algorithm
Algorithms
Retrospective Studies
Subjects
Details
- ISSN :
- 1774024X
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- EuroIntervention
- Accession number :
- edsair.doi.dedup.....5bff5af86b4ad23aaedbcad655312205
- Full Text :
- https://doi.org/10.4244/eij-d-20-01155