Back to Search Start Over

Borsuk’s antipodal fixed points theorems for compact or condensing set-valued maps

Authors :
Hakim Hammami
Altwaijry Najla
Pascal Gourdel
Souhail Chebbi
College of Science, King Saud University
King Saoud University Riadh
King Saud University [Riyadh] (KSU)
College of Telecom and Information, Riyadh
Paris School of Economics (PSE)
École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Centre d'économie de la Sorbonne (CES)
Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)
This project was funded by the National Plan for Sciences, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, award number 12-MAT2703-02.
Source :
Advances in Nonlinear Analysis, Advances in Nonlinear Analysis, De Gruyter, 2016, 7 (3), pp.307-311. ⟨10.1515/anona-2016-0128⟩, Advances in Nonlinear Analysis, Vol 7, Iss 3, Pp 307-311 (2018)
Publication Year :
2016
Publisher :
Walter de Gruyter GmbH, 2016.

Abstract

We give a generalized version of the well-known Borsuk’s antipodal fixed point theorem for a large class of antipodally approachable condensing or compact set-valued maps defined on closed subsets of locally convex topological vector spaces. These results contain corresponding results obtained in the literature for compact set-valued maps with convex values.

Details

ISSN :
2191950X and 21919496
Volume :
7
Database :
OpenAIRE
Journal :
Advances in Nonlinear Analysis
Accession number :
edsair.doi.dedup.....5be42ba249af54796e4fc3b6acc39693
Full Text :
https://doi.org/10.1515/anona-2016-0128