Back to Search Start Over

Genome sequencing of Colletotrichum gloeosporioides ES026 reveals plausible pathway of HupA

Authors :
Haiyang Xia
Hamza Armghan Noushahi
Aamir Hamid Khan
Ying Liu
Andreea Cosoveanu
Lingli Cui
Jing Tang
Shehzad Iqbal
Shaohua Shu
Source :
Molecular Biology Reports. 49:11611-11622
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA.The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA.We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.

Details

ISSN :
15734978 and 03014851
Volume :
49
Database :
OpenAIRE
Journal :
Molecular Biology Reports
Accession number :
edsair.doi.dedup.....5bd98bb1f0359ce2dd35f31522abd435