Back to Search Start Over

Efficient Aggregated Kernel Tests using Incomplete $U$-statistics

Authors :
Antonin Schrab
Ilmun Kim
Benjamin Guedj
Arthur Gretton
University College of London [London] (UCL)
Department of Computer science [University College of London] (UCL-CS)
Institut National de Recherche en Informatique et en Automatique (Inria)
Inria Lille - Nord Europe
The Alan Turing Institute
The Inria London Programme (Inria-London)
University College of London [London] (UCL)-University College of London [London] (UCL)-Institut National de Recherche en Informatique et en Automatique (Inria)
MOdel for Data Analysis and Learning (MODAL)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS)
Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)
Guedj, Benjamin
Source :
HAL
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

We propose a series of computationally efficient nonparametric tests for the two-sample, independence, and goodness-of-fit problems, using the Maximum Mean Discrepancy (MMD), Hilbert Schmidt Independence Criterion (HSIC), and Kernel Stein Discrepancy (KSD), respectively. Our test statistics are incomplete $U$-statistics, with a computational cost that interpolates between linear time in the number of samples, and quadratic time, as associated with classical $U$-statistic tests. The three proposed tests aggregate over several kernel bandwidths to detect departures from the null on various scales: we call the resulting tests MMDAggInc, HSICAggInc and KSDAggInc. This procedure provides a solution to the fundamental kernel selection problem as we can aggregate a large number of kernels with several bandwidths without incurring a significant loss of test power. For the test thresholds, we derive a quantile bound for wild bootstrapped incomplete $U$-statistics, which is of independent interest. We derive non-asymptotic uniform separation rates for MMDAggInc and HSICAggInc, and quantify exactly the trade-off between computational efficiency and the attainable rates: this result is novel for tests based on incomplete $U$-statistics, to our knowledge. We further show that in the quadratic-time case, the wild bootstrap incurs no penalty to test power over the more widespread permutation-based approach, since both attain the same minimax optimal rates (which in turn match the rates that use oracle quantiles). We support our claims with numerical experiments on the trade-off between computational efficiency and test power. In all three testing frameworks, the linear-time versions of our proposed tests perform at least as well as the current linear-time state-of-the-art tests.<br />34 pages, 5 figures

Details

Language :
English
Database :
OpenAIRE
Journal :
HAL
Accession number :
edsair.doi.dedup.....5bd6a62906764aab6f3dfa5919f3d9e8