Back to Search
Start Over
Synthesis of Novel Derivatives of 5,6,7,8-Tetrahydroquinazolines Using α-Aminoamidines and In Silico Screening of Their Biological Activity
- Source :
- International Journal of Molecular Sciences; Volume 23; Issue 7; Pages: 3781
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.
- Subjects :
- α-aminoamidine
diarylidencyclohexanone
tetrahydroquinazoline
molecular docking
inhibitor
antitubercular
antidiabetic
Molecular Structure
Organic Chemistry
Antitubercular Agents
Mycobacterium tuberculosis
General Medicine
Catalysis
Computer Science Applications
Molecular Docking Simulation
Inorganic Chemistry
Structure-Activity Relationship
Tetrahydrofolate Dehydrogenase
Quinazolines
Physical and Theoretical Chemistry
Molecular Biology
Spectroscopy
Subjects
Details
- ISSN :
- 14220067
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- International Journal of Molecular Sciences
- Accession number :
- edsair.doi.dedup.....5ba850d7fc568ee0e27b913bfb88ddd8
- Full Text :
- https://doi.org/10.3390/ijms23073781