Back to Search Start Over

Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene

Authors :
Tomoki Ozawa
and A. Amo
Isabelle Sagnes
A. Harouri
M. Milicevic
L. Le Gratiet
Gilles Montambaux
Aristide Lemaître
O. Jamadi
Jacqueline Bloch
Bastián Real
Laboratoire de Physique des Solides (LPS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Service Agronomie Economie Environnement
ARVALIS - Institut du végétal [Paris]
France Telecom, Centre National d'Etudes de Télécommunications, Laboratoire de Bagneux (CNET Bagneux)
CNET
Laboratoire de photonique et de nanostructures (LPN)
Centre National de la Recherche Scientifique (CNRS)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
Source :
Physical Review X, Physical Review X, American Physical Society, 2019, 9 (3), ⟨10.1103/PhysRevX.9.031010⟩, Physical Review X, Vol 9, Iss 3, p 031010 (2019), Physical Review X, 2019, 9 (3), ⟨10.1103/PhysRevX.9.031010⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; The extraordinary electronic properties of Dirac materials, the two-dimensional partners of Weyl semimetals, arise from the linear crossings in their band structure. When the dispersion around the Dirac points is tilted, one can predict the emergence of intricate transport phenomena such as modified Klein tunneling, intrinsic anomalous Hall effects, and ferrimagnetism. However, Dirac materials are rare, particularly with tilted Dirac cones. Recently, artificial materials whose building blocks present orbital degrees of freedom have appeared as promising candidates for the engineering of exotic Dirac dispersions. Here we take advantage of the orbital structure of photonic resonators arranged in a honeycomb lattice to implement photonic lattices with semi-Dirac, tilted, and, most interestingly, type-III Dirac cones that combine flat and linear dispersions. Type-III Dirac cones emerge from the touching of a flat and a parabolic band when synthetic photonic strain is introduced in the lattice, and they possess a nontrivial topological charge. This photonic realization provides a recipe for the synthesis of orbital Dirac matter with unconventional transport properties and, in combination with polariton nonlinearities, opens the way to study Dirac superfluids in topological landscapes.

Details

Language :
English
ISSN :
21603308
Database :
OpenAIRE
Journal :
Physical Review X, Physical Review X, American Physical Society, 2019, 9 (3), ⟨10.1103/PhysRevX.9.031010⟩, Physical Review X, Vol 9, Iss 3, p 031010 (2019), Physical Review X, 2019, 9 (3), ⟨10.1103/PhysRevX.9.031010⟩
Accession number :
edsair.doi.dedup.....5b6b57735bc9d8f6dc51783ce93adf55
Full Text :
https://doi.org/10.1103/PhysRevX.9.031010⟩