Back to Search Start Over

Grapevines under drought do not express esca leaf symptoms

Authors :
Chloé E. L. Delmas
Pascal Lecomte
Yves Gibon
Jérôme Jolivet
Silvina Dayer
Giovanni Bortolami
Nathalie Ferrer
Cédric Cassan
Gregory A. Gambetta
Elena Farolfi
Santé et agroécologie du vignoble (UMR SAVE)
Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV)
Biologie du fruit et pathologie (BFP)
Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
French Ministry of Agriculture and Food, FranceAgriMer, Comite National des Interprofessions des Vins a appellation d'origine et a indication geographique within the PHYSIOPATH Project (Program Plan National Deperissement du Vignoble)
Source :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (43), pp.e2112825118. ⟨10.1073/pnas.2112825118⟩, Proc Natl Acad Sci U S A
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; In the context of climate change, plant mortality is increasing worldwide in both natural and agroecosystems. However, our understanding of the underlying causes is limited by the complex interactions between abiotic and biotic factors and the technical challenges that limit investigations of these interactions. Here, we studied the interaction between two main drivers of mortality, drought and vascular disease (esca), in one of the world’s most economically valuable fruit crops, grapevine. We found that drought totally inhibited esca leaf symptom expression. We disentangled the plant physiological response to the two stresses by quantifying whole-plant water relations (i.e., water potential and stomatal conductance) and carbon balance (i.e., CO 2 assimilation, chlorophyll, and nonstructural carbohydrates). Our results highlight the distinct physiology behind these two stress responses, indicating that esca (and subsequent stomatal conductance decline) does not result from decreases in water potential and generates different gas exchange and nonstructural carbohydrate seasonal dynamics compared to drought.

Details

Language :
English
ISSN :
00278424 and 10916490
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (43), pp.e2112825118. ⟨10.1073/pnas.2112825118⟩, Proc Natl Acad Sci U S A
Accession number :
edsair.doi.dedup.....5b2eb7657318482116ed40f213c713b4