Back to Search
Start Over
Nanographene favors electronic interactions with an electron acceptor rather than an electron donor in a planar fused push-pull conjugate
- Source :
- Nanoscale. 11(3)
- Publication Year :
- 2019
-
Abstract
- A combination of a preexfoliated nanographene (NG) dispersion and fused electron donor–acceptor tetrathiafulvalene–perylenediimide (TTF–PDI) results in a noncovalent functionalization of NG. Such novel types of nanohybrids were characterized by complementary spectroscopic and microscopic techniques. The design strategy of the chromophoric and electroactive molecular conjugate renders a large and planar π-extended system with a distinct localization of electron-rich and electron-poor parts at either end of the molecular conjugate. Within the in situ formed nanohybrid, the conjugate was found to couple electronically with NG preferentially through the electron accepting PDI rather than the electron donating TTF and to form the one-electron reduced form of PDI, which corresponds to p-doping of graphene.
- Subjects :
- chemistry.chemical_classification
Graphene
Electron donor
02 engineering and technology
Electron
Electron acceptor
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
law.invention
Crystallography
chemistry.chemical_compound
Planar
chemistry
law
540 Chemistry
570 Life sciences
biology
Surface modification
General Materials Science
0210 nano-technology
Dispersion (chemistry)
Conjugate
Subjects
Details
- ISSN :
- 20403372
- Volume :
- 11
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Nanoscale
- Accession number :
- edsair.doi.dedup.....5afedf6be16ab011914df2253cbb82e6