Back to Search
Start Over
Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization
- Source :
- Journal of Industrial Microbiology and Biotechnology. 42:553-565
- Publication Year :
- 2015
- Publisher :
- Oxford University Press (OUP), 2015.
-
Abstract
- A partial peptide sequence of β-glucosidase isoform (Bgl4) of Penicillium funiculosum NCL1 was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The cDNA (bgl4) encoding Bgl4 protein was cloned from P. funiculosum NCL1 RNA by consensus RT-PCR. The bgl4 gene encoded 857 amino acids that contained catalytic domains specific for glycoside hydrolase family 3. The cDNA was over-expressed in Pichia pastoris KM71H and the recombinant protein (rBgl4) was purified with the specific activity of 1,354.3 U/mg. The rBgl4 was a glycoprotein with the molecular weight of ~130 kDa and showed optimal activity at pH 5.0 and 60 °C. The enzyme was thermo-tolerant up to 60 °C for 60 min. The rBgl4 was highly active on aryl substrates with β-glucosidic, β-xylosidic linkages and moderately active on cellobiose and salicin. It showed remarkably high substrate conversion rate of 3,332 and 2,083 μmol/min/mg with the substrates p-nitrophenyl β-glucoside and cellobiose respectively. In addition, the rBgl4 showed tolerance to glucose concentration up to 400 mM. It exhibited twofold increase in glucose yield when supplemented with crude cellulase of Trichoderma reesei Rut-C30 in cellulose hydrolysis. These results suggested that rBgl4 is a thermo- and glucose-tolerant β-glucosidase and is a potential supplement for commercial cellulase in cellulose hydrolysis and thereby assures profitability in bioethanol production.
- Subjects :
- Models, Molecular
Cellobiose
Molecular Sequence Data
Bioengineering
Cellulase
Biology
Applied Microbiology and Biotechnology
Pichia
Substrate Specificity
Pichia pastoris
chemistry.chemical_compound
Hydrolysis
Catalytic Domain
Enzyme Stability
Amino Acid Sequence
Cloning, Molecular
Cellulose
Trichoderma reesei
Trichoderma
Ethanol
Beta-glucosidase
beta-Glucosidase
Penicillium
Temperature
Glycoside hydrolase family 3
Hydrogen-Ion Concentration
biology.organism_classification
Recombinant Proteins
Molecular Weight
Glucose
chemistry
Biochemistry
biology.protein
Penicillium funiculosum
Biotechnology
Subjects
Details
- ISSN :
- 14765535 and 13675435
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Journal of Industrial Microbiology and Biotechnology
- Accession number :
- edsair.doi.dedup.....5ac26ad788fd06f598639891a7ebd7a4
- Full Text :
- https://doi.org/10.1007/s10295-014-1549-6