Back to Search
Start Over
Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain
- Source :
- Cell Death & Differentiation. 23:681-694
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- The CD95/Fas/APO-1 death-inducing signaling complex (DISC), comprising CD95, FADD, procaspase-8, procaspase-10, and c-FLIP, has a key role in apoptosis induction. Recently, it was demonstrated that procaspase-8 activation is driven by death effector domain (DED) chains at the DISC. Here, we analyzed the molecular architecture of the chains and the role of the short DED proteins in regulating procaspase-8 activation in the chain model. We demonstrate that the DED chains are largely composed of procaspase-8 cleavage products and, in particular, of its prodomain. The DED chain also comprises c-FLIP and procaspase-10 that are present in 10 times lower amounts compared with procaspase-8. We show that short c-FLIP isoforms can inhibit CD95-induced cell death upon overexpression, likely by forming inactive heterodimers with procaspase-8. Furthermore, we have addressed mechanisms of the termination of chain elongation using experimental and mathematical modeling approaches. We show that neither c-FLIP nor procaspase-8 prodomain terminates the DED chain, but rather the dissociation/association rates of procaspase-8 define the stability of the chain and thereby its length. In addition, we provide evidence that procaspase-8 prodomain generated at the DISC constitutes a negative feedback loop in procaspase-8 activation. Overall, these findings provide new insights into caspase-8 activation in DED chains and apoptosis initiation.
- Subjects :
- 0301 basic medicine
Protein domain
CASP8 and FADD-Like Apoptosis Regulating Protein
Apoptosis
Biology
Bioinformatics
Cleavage (embryo)
Caspase 8
Cell Line
03 medical and health sciences
Enzyme activator
Protein Domains
Humans
fas Receptor
FADD
Molecular Biology
Original Paper
Cell Biology
Fas receptor
Cell biology
Enzyme Activation
030104 developmental biology
Flip
biology.protein
Death effector domain
Subjects
Details
- ISSN :
- 14765403 and 13509047
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- Cell Death & Differentiation
- Accession number :
- edsair.doi.dedup.....5aa7f734665b650df22193fd6a2a44a3
- Full Text :
- https://doi.org/10.1038/cdd.2015.137