Back to Search Start Over

A Physical Model for the Action of Raindrop Erosion on Soil Microtopography

Authors :
Emmanuel Mouche
Olivier Planchon
Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH)
Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Modélisation Hydrologique (HYDRO)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Soil Science Society of America Journal, Soil Science Society of America Journal, Soil Science Society of America, 2010, 74 (4), pp.1092-1103. ⟨10.2136/sssaj2009.0063⟩, Soil Science Society of America Journal, 2010, 74 (4), pp.1092-1103. ⟨10.2136/sssaj2009.0063⟩
Publication Year :
2010
Publisher :
Wiley, 2010.

Abstract

International audience; At finer scales, raindrops are the sources of the onset of soil erosion. Understanding the effects of raindrops at the decimeter scale is useful for soil erosion prediction, understanding erosion principles, and deriving erosion control management practices. The objective of this study was to develop and rest a physically based model to predict the effect of raindrop erosion on soil microtopography and identify the parameters that can be experimentally measured. The model has three parameters: (i) detachment rate mu similar to (9.0 +/- 4.0) x 10(-2) kg m(-2) mm(-1), (ii) average projection distance lambda similar to 0.15 +/- 0.05 m, and (iii) a dimensionless anisotropy coefficient delta similar to 3 +/- 1, which expresses the slope dependency of lambda and mu. Variation in soil height caused by raindrop erosion followed a diffusion-type equation with a source term. Under uniform conditions of soil and rainfall, the model simplifies into a basic diffusion equation. Under the homogeneous bare soil condition, soil surface roughness is predicted by an exponential decay model. Under nonuniform conditions, when sparse perennial vegetation protects the soil locally from raindrop impact (a common surface feature in semiarid areas), the model predicts that small mounds of 2 to 30 cm in height can develop underneath the cover. On a horizontal surface, the mound height asymptotically tends to a limit. On sloping areas, however, mounds are predicted to develop faster, higher, and to be asymmetric. Under both flat and sloping terrain, model predictions were found consistent with published data and models, with the noticeable improvement that the model parameters can be measured by laboratory experiments.

Details

ISSN :
03615995 and 14350661
Volume :
74
Database :
OpenAIRE
Journal :
Soil Science Society of America Journal
Accession number :
edsair.doi.dedup.....5a4dc9332484de833a63b77876ce18f7
Full Text :
https://doi.org/10.2136/sssaj2009.0063