Back to Search
Start Over
Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins
- Source :
- Molecular cell. 74(2)
- Publication Year :
- 2018
-
Abstract
- Summary Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural “off switches” for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2- and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different subtypes, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into anti-CRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.
- Subjects :
- Biology
Neisseria meningitidis
medicine.disease_cause
Article
Bacterial protein
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Genome editing
Bacterial Proteins
CRISPR-Associated Protein 9
medicine
CRISPR
Humans
Molecular Biology
030304 developmental biology
Hydrolase inhibitor
Gene Editing
0303 health sciences
Cas9
Cell Biology
DNA
Cell biology
chemistry
Helix
CRISPR-Cas Systems
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 10974164
- Volume :
- 74
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Molecular cell
- Accession number :
- edsair.doi.dedup.....5a373e8ce4bd5c32868cb97e1435dcd6