Back to Search
Start Over
Numerical Simulation of Adsorption of Organic Inhibitors on C-S-H Gel
- Source :
- Crystals, Volume 10, Issue 9, Crystals, Vol 10, Iss 742, p 742 (2020)
- Publication Year :
- 2020
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2020.
-
Abstract
- Corrosion inhibitors are one of the most effective anticorrosion techniques in reinforced concrete structures. Molecule dynamics (MD) was usually utilized to simulate the interaction between the inhibitor molecules and the surface of Fe to evaluate the inhibition effect, ignoring the influence of cement hydration products. In this paper, the adsorption characteristics of five types of common alkanol-amine inhibitors on C-S-H gel in the alkaline liquid environment were simulated via the MD and the grand canonical Monte Carlo (GCMC) methods. It is found that, in the MD system, the liquid phase environment had a certain impact on the adsorption configuration of compounds. According to the analysis of the energy, the binding ability of MEA on the surface of the C-S-H gel was the strongest. In the GCMC system, the adsorption of MEA was the largest at the same temperature. Furthermore, for the competitive adsorption in the GCMC system, the adsorption characteristics of the inhibitors on the C-S-H gel were to follow the order: MEA&gt<br />DEA&gt<br />TEA&gt<br />NDE&gt<br />DETA. Both MD and GCMC simulations confirmed that the C-S-H gel would adsorb the organic inhibitors to a different extent, which might have a considerable influence on the organic inhibitors to exert their inhibition effects.
- Subjects :
- corrosion inhibitor
General Chemical Engineering
02 engineering and technology
010402 general chemistry
01 natural sciences
Corrosion
Inorganic Chemistry
Molecular dynamics
Corrosion inhibitor
chemistry.chemical_compound
Adsorption
lcsh:QD901-999
Molecule
General Materials Science
calcium silicate hydrate
Calcium silicate hydrate
Grand canonical monte carlo
Computer simulation
021001 nanoscience & nanotechnology
Condensed Matter Physics
simulation
grand canonical Monte Carlo method
molecular dynamics
0104 chemical sciences
chemistry
Chemical engineering
adsorption
concrete
lcsh:Crystallography
0210 nano-technology
Subjects
Details
- Language :
- English
- ISSN :
- 20734352
- Database :
- OpenAIRE
- Journal :
- Crystals
- Accession number :
- edsair.doi.dedup.....5a367b2923afccae69190d1ab28e3ee2
- Full Text :
- https://doi.org/10.3390/cryst10090742