Back to Search Start Over

Functional dissection of the KRAS G12C mutation by comparison among multiple oncogenic driver mutations in a lung cancer cell line model

Authors :
Hiroyuki Yasuda
Yoichiro Mitsuishi
Junko Hamamoto
Kenzo Soejima
Yuichiro Hayashi
Hideki Terai
Tadashi Manabe
Koichi Fukunaga
Ichiro Kawada
Keigo Kobayashi
Yukio Suzuki
Osamu Takeuchi
Keita Masuzawa
Shinnosuke Ikemura
Source :
Biochemical and Biophysical Research Communications. 534:1-7
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

The development of molecular targeted therapy has improved clinical outcomes in patients with life-threatening advanced lung cancers with driver oncogenes. However, selective treatment for KRAS-mutant lung cancer remains underdeveloped. We have successfully characterised specific molecular and pathological features of KRAS-mutant lung cancer utilising newly developed cell line models that can elucidate the differences in driver oncogenes among tissues with identical genetic backgrounds. Among these KRAS-mutation-associated specific features, we focused on the IGF2-IGF1R pathway, which has been implicated in the drug resistance mechanisms to AMG 510, a recently developed selective inhibitor of KRAS G12C lung cancer. Experimental data derived from our cell line model can be used as a tool for clinical treatment strategy development through understanding of the biology of lung cancer. The model developed in this paper may help understand the mechanism of anticancer drug resistance in KRAS-mutated lung cancer and help develop new targeted therapies to treat patients with this disease.

Details

ISSN :
0006291X
Volume :
534
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....5a089624b8a37e05b8ce4725fe1a46df