Back to Search Start Over

Asymptotic Expansion of a Class of Fermi–Dirac Integrals

Authors :
M. L. Glasser
J. Boersma
Center for Analysis, Scientific Computing & Appl.
VF-programma Toepassingsgerichte Analyse (1984-1994) THE.WSK.101.84.25 (1984) TUE.WSK.301.90.25 (1990)
Source :
SIAM Journal on Mathematical Analysis, 22(3), 810-820. Society for Industrial and Applied Mathematics (SIAM)
Publication Year :
1991
Publisher :
Society for Industrial & Applied Mathematics (SIAM), 1991.

Abstract

A procedure is presented for obtaining the complete asymptotic expansion of a class of fractional integrals (of Riemann–Liouville type), in which the integrand contains the product of two derivatives of the Fermi–Dirac integral. The procedure uses two-sided Laplace transforms and Abelian asymptotics of the inverse Laplace transform. The fractional integrals considered arise in various problems from statistical mechanics and solid state physics.

Details

ISSN :
10957154 and 00361410
Volume :
22
Database :
OpenAIRE
Journal :
SIAM Journal on Mathematical Analysis
Accession number :
edsair.doi.dedup.....59cd965892355895702f5da38944e3fe