Back to Search
Start Over
Comparison of model-building strategies for excess hazard regression models in the context of cancer epidemiology
- Source :
- BMC Medical Research Methodology, Vol 19, Iss 1, Pp 1-18 (2019), BMC Medical Research Methodology
- Publication Year :
- 2019
- Publisher :
- BMC, 2019.
-
Abstract
- Background Large and complex population-based cancer data are becoming broadly available, thanks to purposeful linkage between cancer registry data and health electronic records. Aiming at understanding the explanatory power of factors on cancer survival, the modelling and selection of variables need to be understood and exploited properly for improving model-based estimates of cancer survival. Method We assess the performances of well-known model selection strategies developed by Royston and Sauerbrei and Wynant and Abrahamowicz that we adapt to the relative survival data setting and to test for interaction terms. Results We apply these to all male patients diagnosed with lung cancer in England in 2012 (N = 15,688), and followed-up until 31/12/2015. We model the effects of age at diagnosis, tumour stage, deprivation, comorbidity and emergency presentation, as well as interactions between age and all of the above. Given the size of the dataset, all model selection strategies favoured virtually the same model, except for a non-linear effect of age at diagnosis selected by the backward-based selection strategies (versus a linear effect selected otherwise). Conclusion The results from extensive simulations evaluating varying model complexity and sample sizes provide guidelines on a model selection strategy in the context of excess hazard modelling.
- Subjects :
- Male
Lung Neoplasms
Excess hazard models
Variable selection
Epidemiology
Computer science
Non-proportionality
Population
Interactions
Health Informatics
Context (language use)
Non-linearity
01 natural sciences
010104 statistics & probability
03 medical and health sciences
0302 clinical medicine
Epidemiology of cancer
Humans
0101 mathematics
education
Selection (genetic algorithm)
Aged
Neoplasm Staging
Proportional Hazards Models
Aged, 80 and over
education.field_of_study
lcsh:R5-920
Actuarial science
Relative survival
Model selection
Age Factors
Middle Aged
Cancer registry
Survival Rate
England
Nonlinear Dynamics
Sample size determination
030220 oncology & carcinogenesis
Linear Models
lcsh:Medicine (General)
Algorithms
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 14712288
- Volume :
- 19
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- BMC Medical Research Methodology
- Accession number :
- edsair.doi.dedup.....59aa8cb0068f4d3fd8fa9921a5a2f7cc