Back to Search Start Over

Characterization of pomiferin triacetate as a novel mTOR and translation inhibitor

Authors :
Zigang Dong
Tobias Schmid
Nancy H. Colburn
James B. McMahon
Kirk R. Gustafson
Michael M. Kunze
Magdalena M. Bajer
Heidi R. Bokesch
Bernhard Brüne
Thilo F. Brauß
Ricardo M. Biondi
H. S. Chen
Johanna S. Blees
Curtis J. Henrich
Source :
Biochemical Pharmacology. 88:313-321
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

Deregulation of the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-70kDa ribosomal protein S6 kinase 1 (p70(S6K)) pathway is commonly observed in many tumors. This pathway controls proliferation, survival, and translation, and its overactivation is associated with poor prognosis for tumor-associated survival. Current efforts focus on the development of novel inhibitors of this pathway. In a cell-based high-throughput screening assay of 15,272 pure natural compounds, we identified pomiferin triacetate as a potent stabilizer of the tumor suppressor programmed cell death 4 (Pdcd4). Mechanistically, pomiferin triacetate appeared as a general inhibitor of the PI3K-Akt-mTOR-p70(S6K) cascade. Interference with this pathway occurred downstream of Akt but upstream of p70(S6K). Specifically, mTOR kinase emerged as the molecular target of pomiferin triacetate, with similar activities against mTOR complexes 1 and 2. In an in vitro mTOR kinase assay pomiferin triacetate dose-dependently inhibited mTOR with an IC50 of 6.2 μM. Molecular docking studies supported the interaction of the inhibitor with the catalytic site of mTOR. Importantly, pomiferin triacetate appeared to be highly selective for mTOR compared to a panel of 17 lipid and 50 protein kinases tested. As a consequence of the mTOR inhibition, pomiferin triacetate efficiently attenuated translation. In summary, pomiferin triacetate emerged as a novel and highly specific mTOR inhibitor with strong translation inhibitory effects. Thus, it might be an interesting lead structure for the development of mTOR- and translation-targeted anti-tumor therapies.

Details

ISSN :
00062952
Volume :
88
Database :
OpenAIRE
Journal :
Biochemical Pharmacology
Accession number :
edsair.doi.dedup.....598606d981860f1eb7f0dd3095e65a61
Full Text :
https://doi.org/10.1016/j.bcp.2014.01.034