Back to Search Start Over

Preload Characterization of Short Models of MQXF the Nb3Sn Low-β Quadrupole for the Hi-Lumi LHC

Authors :
Juan Carlos Perez
Thomas Strauss
Paolo Ferracin
Giorgio Vallone
Soren Prestemon
Nicolas Bourcey
Daniel W. Cheng
Michael Guinchard
Franco Mangiarotti
Giorgio Ambrosio
E. Takala
Heng Pan
Susana Izquierdo Bermudez
Source :
IEEE Transactions on Applied Superconductivity. 30:1-6
Publication Year :
2020
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2020.

Abstract

MQXF is the Nb$_3$Sn Low-β Quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 as part of an upgrade to increase the LHC inte-grated luminosity by about a factor of ten. The magnet will be fab-ricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet de-sign and characterize its performance with different conductors, cable geometries and pre-load configuration, five short model magnets, called MQXFS, were fabricated, assembled and tested. The latest model, MQXFS6, uses a new powder-in-tube (PIT) su-perconducting wire, featuring a bundle barrier surrounding the filaments. The coil and the support structure were equipped with strain gauges and optical fibres to monitor strain during assembly, cool-down and excitation. In this paper we further develop the conventional azimuthal preload analysis and introduce a new set of tools for MQXF coil pack characterization which we use to an-alyse the behaviour of MQXFS6 room temperature preload and to reanalyse all the short models tested at CERN. A comparison is made between all the studied magnets revealing new characteriz-ing preload parameters. MQXF is the Nb$_3$Sn Low-β Quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 as part of an upgrade to increase the LHC integrated luminosity by about a factor of ten. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the magnet design and characterize its performance with different conductors, cable geometries and pre-load configuration, five short model magnets, called MQXFS, were fabricated, assembled and tested. The latest model, MQXFS6, uses a new powder-in-tube (PIT) superconducting wire, featuring a bundle barrier surrounding the filaments. The coil and the support structure were equipped with strain gauges and optical fibres to monitor strain during assembly, cool-down and excitation. In this paper we further develop the conventional azimuthal preload analysis and introduce a new set of tools for MQXF coil pack characterization which we use to analyse the behaviour of MQXFS6 room temperature preload and to reanalyse all the short models tested at CERN. A comparison is made between all the studied magnets revealing new characterizing preload parameters.

Details

ISSN :
23787074 and 10518223
Volume :
30
Database :
OpenAIRE
Journal :
IEEE Transactions on Applied Superconductivity
Accession number :
edsair.doi.dedup.....5969b1d7517146f4716b3731417ad9a0