Back to Search Start Over

Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits

Authors :
Roshni A. Patel
Shaila A. Musharoff
Jeffrey P. Spence
Harold Pimentel
Catherine Tcheandjieu
Hakhamanesh Mostafavi
Nasa Sinnott-Armstrong
Shoa L. Clarke
Courtney J. Smith
Peter P. Durda
Kent D. Taylor
Russell Tracy
Yongmei Liu
W. Craig Johnson
Francois Aguet
Kristin G. Ardlie
Stacey Gabriel
Josh Smith
Deborah A. Nickerson
Stephen S. Rich
Jerome I. Rotter
Philip S. Tsao
Themistocles L. Assimes
Jonathan K. Pritchard
Source :
Am J Hum Genet
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.

Details

ISSN :
00029297
Volume :
109
Database :
OpenAIRE
Journal :
The American Journal of Human Genetics
Accession number :
edsair.doi.dedup.....5965c876f9fb9af461fd63ba403ca0bb
Full Text :
https://doi.org/10.1016/j.ajhg.2022.05.014