Back to Search Start Over

New SMOS Sea Surface Salinity with reduced systematic errors and improved variability

Authors :
Jérôme Vialard
Nicolas Reul
Gilles Reverdin
Jacqueline Boutin
Audrey Hasson
Francesco D'Amico
Nicolas Kolodziejczyk
Jean-Luc Vergely
Stéphane Marchand
Processus et interactions de fine échelle océanique (PROTEO)
Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN)
Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Analytic and Computational Research, Inc. - Earth Sciences (ACRI-ST)
Laboratoire d'Océanographie Physique et Spatiale (LOPS)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Océan et variabilité du climat (VARCLIM)
CNES-CATDS 2016, 2017 and CNES-TOSCA 2016, 2017 SMOS-Ocean projects
Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Source :
Remote Sensing of Environment, Remote Sensing of Environment, 2018, 214, pp.115-134. ⟨10.1016/j.rse.2018.05.022⟩, Remote Sensing of Environment, Elsevier, 2018, 214, pp.115-134. ⟨10.1016/j.rse.2018.05.022⟩, Remote Sensing Of Environment (0034-4257) (Elsevier Science Inc), 2018-09, Vol. 214, P. 115-134
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Salinity observing satellites have the potential to monitor river fresh-water plumes mesoscale spatio-temporal variations better than any other observing system. In the case of the Soil Moisture and Ocean Salinity (SMOS) satellite mission, this capacity was hampered due to the contamination of SMOS data processing by strong land-sea emissivity contrasts. Kolodziejczyk et al. (2016) (hereafter K2016) developed a methodology to mitigate SMOS systematic errors in the vicinity of continents, that greatly improved the quality of the SMOS Sea Surface Salinity (SSS). Here, we find that SSS variability, however, often remained underestimated, such as near major river mouths. We revise the K2016 methodology with: a) a less stringent filtering of measurements in regions with high SSS natural variability (inferred from SMOS measurements) and b) a correction for seasonally-varying latitudinal systematic errors. With this new mitigation, SMOS SSS becomes more consistent with the independent SMAP SSS close to land, for instance capturing consistent spatio-temporal variations of low salinity waters in the Bay of Bengal and Gulf of Mexico. The standard deviation of the differences between SMOS and SMAP weekly SSS is

Details

Language :
English
ISSN :
00344257 and 18790704
Database :
OpenAIRE
Journal :
Remote Sensing of Environment, Remote Sensing of Environment, 2018, 214, pp.115-134. ⟨10.1016/j.rse.2018.05.022⟩, Remote Sensing of Environment, Elsevier, 2018, 214, pp.115-134. ⟨10.1016/j.rse.2018.05.022⟩, Remote Sensing Of Environment (0034-4257) (Elsevier Science Inc), 2018-09, Vol. 214, P. 115-134
Accession number :
edsair.doi.dedup.....5951048846503c877eb2c74c9c906592
Full Text :
https://doi.org/10.1016/j.rse.2018.05.022⟩