Back to Search Start Over

Geroscience

Authors :
Jorge García Martínez
Jorge D. Erusalimsky
Jose Viña
Jesper Tegnér
Catherine Féart
Timothy C. Hardman
Isabelle Carrié
Stefan Walter
Lucia Bernad Palomares
Matteo Cesari
Lee Butcher
Harald Mischak
Tilman Grune
Chiara Bonaguri
Giuseppe Lippi
David Gomez-Cabrero
Catherine Helmer
Imad Abugessaisa
Leocadio Rodríguez-Mañas
Stefania Bandinelli
Gloria Olaso
Alan J Sinclair
Francisco José García-García
Rebeca Miñambres-Herraiz
Irene García-Palmero
Daniela Weber
Edoardo Fiorillo
Marco Colpo
Matthias Hackl
Francesco Cucca
Pidder Jansen-Dürr
Petra Zürbig
José A. Carnicero
Jean-François Dartigues
Karine Pérès
Johannes Grillari
Bordeaux population health (BPH)
Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Institut National de la Santé et de la Recherche Médicale
Fondation pour la Recherche Médicale
Conseil Régional Aquitaine
Conseil régional de Bourgogne-Franche-Comté
Fondation de France
Fondation Plan Alzheimer
Caisse nationale de solidarité pour l'autonomie
European Project: 305483,EC:FP7:HEALTH,FP7-HEALTH-2012-INNOVATION-1,FRAILOMIC(2013)
Source :
GeroScience, GeroScience, Springer International Publishing, 2021, ⟨10.1007/s11357-021-00334-0⟩, r-INCLIVA. Repositorio Institucional de Producción Científica de INCLIVA, instname, GeroScience, 2021, ⟨10.1007/s11357-021-00334-0⟩
Publication Year :
2020

Abstract

Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68-0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70-0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56-0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23-1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81-0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27-1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21-1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01-1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.

Details

ISSN :
25092723 and 25092715
Volume :
43
Issue :
3
Database :
OpenAIRE
Journal :
GeroScience
Accession number :
edsair.doi.dedup.....591f90bf7dd21f1ef44b903ff876eedf
Full Text :
https://doi.org/10.1007/s11357-021-00334-0⟩