Back to Search Start Over

Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H2 Production

Authors :
Giulia Bonfant
Davide Balestri
Jacopo Perego
Angiolina Comotti
Silvia Bracco
Matthieu Koepf
Marcello Gennari
Luciano Marchiò
Bonfant, G
Balestri, D
Perego, J
Comotti, A
Bracco, S
Koepf, M
Gennari, M
Marchio, L
Department of Chemistry, Life Sciences and Environmental Sustainability [Parma]
Università degli studi di Parma = University of Parma (UNIPR)
Dipartimento di Scienza dei Materiali = Department of Materials Science [Milano-Bicocca]
Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB)
Solar fuels, hydrogen and catalysis (SolHyCat)
Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Département de Chimie Moléculaire (DCM)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Source :
ACS Omega, ACS Omega, 2022, 7 (7), pp.6104-6112. ⟨10.1021/acsomega.1c06522⟩
Publication Year :
2022
Publisher :
American Chemical Society, 2022.

Abstract

International audience; Suitably functionalized porous matrices represent versatile platforms to support well-dispersed catalytic centers. In the present study, porous organic polymers (POPs) containing phosphine oxide groups were fabricated to bind transition metals and to be investigated for potential electrocatalytic applications. Cross-linking of mono- and di-phosphine monomers with multiple phenyl substituents was subject to the Friedel-Crafts (F-C) reaction and the oxidation process, which generated phosphine oxide porous polymers with pore capacity up to 0.92 cm(3)/g and a surface area of about 990 m(2)/g. The formation of the R3P center dot BH3 borohydride adduct during synthesis allows to extend the library of phosphine-based monomeric entities when using FeCl3. The porous polymers were loaded with 0.8-4.2 w/w % of cobalt(II) and behaved as hydrogen evolution reaction (HER) catalysts with a Faradaic efficiency of up to 95% (5.81 x 10(-5) mol H-2 per 11.76 C) and a stable current density during repeated controlled potential experiments (CPE), even though with high overpotentials (0.53-0.68 V to reach a current density of 1 mA.cm(-2)). These studies open the way to the effectiveness of tailored phosphine oxide POPs produced through an inexpensive and ecofriendly iron-based catalyst and for the insertion of transition metals in a porous architecture, enabling electrochemically driven activation of small molecules.

Details

Language :
English
ISSN :
24701343
Database :
OpenAIRE
Journal :
ACS Omega, ACS Omega, 2022, 7 (7), pp.6104-6112. ⟨10.1021/acsomega.1c06522⟩
Accession number :
edsair.doi.dedup.....590e1e74e1ddc11587a2273811a934fb
Full Text :
https://doi.org/10.1021/acsomega.1c06522⟩