Back to Search Start Over

Mass transportation proofs of free functional inequalities, and free Poincaré inequalities

Authors :
Ionel Popescu
Michel Ledoux
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Georgia Institute of Technology [Atlanta]
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Functional Analysis, Journal of Functional Analysis, Elsevier, 2009, 257, p. 1175-1221. ⟨10.1016/j.jfa.2009.03.011⟩, Journal of Functional Analysis, 2009, 257, p. 1175-1221. ⟨10.1016/j.jfa.2009.03.011⟩
Publication Year :
2009
Publisher :
Elsevier BV, 2009.

Abstract

This work is devoted to direct mass transportation proofs of families of functional inequalities in the context of one-dimensional free probability, avoiding random matrix approximation. The inequalities include the free form of the transportation, Log-Sobolev, HWI interpolation and Brunn-Minkowski inequalities for strictly convex potentials. Sharp constants and some extended versions are put forward. The paper also addresses two versions of free Poincar\'e inequalities and their interpretation in terms of spectral properties of Jacobi operators. The last part establishes the corresponding inequalities for measures on $\R_{+}$ with the reference example of the Marcenko-Pastur distribution.<br />Comment: This paper will apear in Journal of Fucntional Analysis

Details

ISSN :
00221236 and 10960783
Volume :
257
Issue :
4
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....585b1942949259531293b7cff7f6bdf9
Full Text :
https://doi.org/10.1016/j.jfa.2009.03.011