Back to Search Start Over

Modeling the albedo of Earth-like magma ocean planets with H2O-CO2 atmospheres

Authors :
Emmanuel Marcq
Martin Turbet
William Pluriel
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
ECLIPSE 2019
Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB)
Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Source :
Icarus, Icarus, Elsevier, 2019, 317, pp.583-590. ⟨10.1016/j.icarus.2018.08.023⟩, Icarus, 2019, 317, pp.583-590. ⟨10.1016/j.icarus.2018.08.023⟩
Publication Year :
2019

Abstract

During accretion, the young rocky planets are so hot that they become endowed with a magma ocean. From that moment, the mantle convective thermal flux control the cooling of the planet and an atmosphere is created by outgassing. This atmosphere will then play a key role during this cooling phase. Studying this cooling phase in details is a necessary step to explain the great diversity of the observed telluric planets and especially to assess the presence of surface liquid water. We used here a radiative-convective 1D atmospheric model (H2O, CO2) to study the impact of the Bond albedo on the evolution of magma ocean planets. We derived from this model the thermal emission spectrum and the spectral reflectance of these planets, from which we calculated their Bond albedos. Compared to Marcq et al. (2017), the model now includes a new module to compute the Rayleigh scattering, and state of the art CO2 and H2O gaseous opacities data in the visible and infrared spectral ranges. We show that the Bond albedo of these planets depends on their surface temperature and results from a competition between Rayleigh scattering from the gases and Mie scattering from the clouds. The colder the surface temperature is, the thicker the clouds are, and the higher the Bond albedo is. We also evidence that the relative abundances of CO2 and H2O in the atmosphere strongly impact the Bond albedo. The Bond albedo is higher for atmospheres dominated by the CO2, better Rayleigh scatterer than H2O. Finally, we provide the community with an empirical formula for the Bond albedo that could be useful for future studies of magma ocean planets.<br />16 pages, 10 figures, 5 tables. Accepted for publication in the Journal Icarus the 27 August 2018

Details

ISSN :
00191035 and 10902643
Database :
OpenAIRE
Journal :
Icarus
Accession number :
edsair.doi.dedup.....583967b2f91d4e02edb35e9d408b0111
Full Text :
https://doi.org/10.1016/j.icarus.2018.08.023