Back to Search Start Over

Endothelial Iron Homeostasis Regulates Blood-Brain Barrier Integrity via the HIF2α—Ve-Cadherin Pathway

Authors :
Orly Ravid
Itzik Cooper
Liora Omesi
Yael Bresler
Sigal Liraz-Zaltsman
Peter Wipf
Daniel Rand
Fabien Gosselet
Hila Israelov
Chen Shemesh
Taber S. Maskrey
Michal Schnaider Beeri
Dana Atrakchi
Chaim Sheba Medical Center
Sackler Faculty of Medicine
Tel Aviv University [Tel Aviv]
The Hebrew University of Jerusalem (HUJ)
Laboratoire de la Barrière Hémato-Encéphalique (LBHE)
Université d'Artois (UA)
University of Pittsburgh (PITT)
Pennsylvania Commonwealth System of Higher Education (PCSHE)
Icahn School of Medicine at Mount Sinai [New York] (MSSM)
Interdisciplinary Center [Israël] (IDC)
Interdisciplinary Center
Source :
Pharmaceutics, Vol 13, Iss 311, p 311 (2021), Pharmaceutics, Pharmaceutics, MDPI, 2021, 13 (3), pp.311. ⟨10.3390/pharmaceutics13030311⟩, Volume 13, Issue 3
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

International audience; The objective of this study was to investigate the molecular response to damage at the blood brain barrier (BBB) and to elucidate critical pathways that might lead to effective treatment in central nervous system (CNS) pathologies in which the BBB is compromised. We have used a human, stem-cell derived in-vitro BBB injury model to gain a better understanding of the mechanisms controlling BBB integrity. Chemical injury induced by exposure to an organophosphate resulted in rapid lipid peroxidation, initiating a ferroptosis-like process. Additionally, mitochondrial ROS formation (MRF) and increase in mitochondrial membrane permeability were induced, leading to apoptotic cell death. Yet, these processes did not directly result in damage to barrier functionality, since blocking them did not reverse the increased permeability. We found that the iron chelator, Desferal© significantly decreased MRF and apoptosis subsequent to barrier insult, while also rescuing barrier integrity by inhibiting the labile iron pool increase, inducing HIF2α expression and preventing the degradation of Ve-cadherin specifically on the endothelial cell surface. Moreover, the novel nitroxide JP4-039 significantly rescued both injury-induced endothelium cell toxicity and barrier functionality. Elucidating a regulatory pathway that maintains BBB integrity illuminates a potential therapeutic approach to protect the BBB degradation that is evident in many neurological diseases.

Details

Language :
English
ISSN :
19994923
Volume :
13
Issue :
311
Database :
OpenAIRE
Journal :
Pharmaceutics
Accession number :
edsair.doi.dedup.....582a786b9588f5450f189d88fe446adc