Back to Search
Start Over
Short-Term Sleep Fragmentation Dysregulates Autophagy in a Brain Region-Specific Manner
- Source :
- Life, Volume 11, Issue 10, Life, Vol 11, Iss 1098, p 1098 (2021)
- Publication Year :
- 2021
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2021.
-
Abstract
- In this study, we investigated autophagy, glial activation status, and corticotropin releasing factor (CRF) signaling in the brains of mice after 5 days of sleep fragmentation (SF). Three different brain regions including the striatum, hippocampus, and frontal cortex were selected for examination based on roles in sleep regulation and sensitivity to sleep disruption. For autophagy, we monitored the levels of various autophagic induction markers including beclin1, LC3II, and p62 as well as the levels of lysosomal associated membrane protein 1 and 2 (LAMP1/2) and the transcription factor EB (TFEB) which are critical for lysosome function and autophagy maturation stage. For the status of microglia and astrocytes, we determined the levels of Iba1 and GFAP in these brain regions. We also measured the levels of CRF and its cognate receptors 1 and 2 (CRFR1/2). Our results showed that 5 days of SF dysregulated autophagy in the striatum and hippocampus but not in the frontal cortex. Additionally, 5 days of SF activated microglia in the striatum but not in the hippocampus or frontal cortex. In the striatum, CRFR2 but not CRFR1 was significantly increased in SF-experienced mice. CRF did not alter its mRNA levels in any of the three brain regions assessed. Our findings revealed that autophagy processes are sensitive to short-term SF in a region-specific manner and suggest that autophagy dysregulation may be a primary initiator for brain changes and functional impairments in the context of sleep disturbances and disorders.
- Subjects :
- medicine.medical_specialty
autophagy
Science
Hippocampus
microglia
Context (language use)
Striatum
Biology
General Biochemistry, Genetics and Molecular Biology
Article
neuroinflammation
Internal medicine
Lysosome
corticotropin releasing factor
medicine
sleep fragmentation
Ecology, Evolution, Behavior and Systematics
Neuroinflammation
Microglia
Autophagy
Paleontology
medicine.anatomical_structure
Endocrinology
nervous system
Space and Planetary Science
TFEB
Subjects
Details
- Language :
- English
- ISSN :
- 20751729
- Database :
- OpenAIRE
- Journal :
- Life
- Accession number :
- edsair.doi.dedup.....5808d9ab6bc0b06c03c28794815725fc
- Full Text :
- https://doi.org/10.3390/life11101098