Back to Search Start Over

Bimetallic Cooperativity with a 2-Phosphinoimidazole-Derived Pd(II) Dimer Enables Naphthalene Synthesis via dimeric Pd(III) Catalysis

Authors :
S. Hadi Nazari
Chloe C. Ence
Erin E. Martinez
Daniel H. Ess
Mariur Rodriguez Moreno
Samantha G. Kulka
Manase F. Matu
David J. Michaelis
Gabriel A. Valdivia-Berroeta
Stacey J. Smith
Kyle J. Gassaway
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

We report the synthesis of bimetallic Pd(I) and Pd(II) complexes scaffolded on bidentate 2-phosphinoimidazole ligands. These complexes display unique catalytic activity and enable the expeditious formation of 1,3-disubstituted naphthalenes via an unprecedented coupling of aryl iodides and methyl ketones in the presence of silver triflate. Excellent substrate scope for naphthalene formation is also demonstrated. Mechanistic studies suggest that the transformation proceeds via Pd-catalyzed arylation of a methyl ketone, followed by cyclization with a second equivalent of ketone. Importantly, this ketone arylation processes occurs under oxidizing conditions, suggesting involvement of higher oxidation state dimeric Pd catalysts. Based on experiments and DFT calculations, we propose a mechanism involving high oxidation state Pd(III) bimetallic catalysis. These new bimetallic complexes possess reactivity that is not seen with monometallic Pd catalysts and we confirm the importance of the palladium catalyst for both arylation and cyclization for naphthalene formation.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....57fcfb439f9746e414476d5040c5e3e7