Back to Search Start Over

Low-thrust Lyapunov to Lyapunov and Halo to Halo missions with L2-minimization

Authors :
Thomas Haberkorn
Maxime Chupin
Emmanuel Trélat
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Airbus Defence and Space [Les Mureaux]
ASTRIUM
Fédération de recherche Denis Poisson (FDP)
Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Source :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (3), pp.965-996. ⟨10.1051/m2an/2016044⟩
Publication Year :
2017
Publisher :
EDP Sciences, 2017.

Abstract

This work is dedicated to Philippe Augros.32 pages, 41 ref.; International audience; In this work, we develop a new method to design energy minimum low-thrust missions (L2-minimization). In the Circular Restricted Three Body Problem, the knowledge of invariant manifolds helps us initialize an indirect method solving a transfer mission between periodic Lyapunov orbits. Indeed, using the PMP, the optimal control problem is solved using Newton-like algorithms finding the zero of a shooting function. To compute a Lyapunov to Lyapunov mission, we first compute an admissible trajectory using a heteroclinic orbit between the two periodic orbits. It is then used to initialize a multiple shooting method in order to release the constraint. We finally optimize the terminal points on the periodic orbits. Moreover, we use continuation methods on position and on thrust, in order to gain robustness. A more general Halo to Halo mission, with different energies, is computed in the last section without heteroclinic orbits but using invariant manifolds to initialize shooting methods with a similar approach.

Details

ISSN :
12903841 and 0764583X
Volume :
51
Database :
OpenAIRE
Journal :
ESAIM: Mathematical Modelling and Numerical Analysis
Accession number :
edsair.doi.dedup.....57bb3d9995f6226481c201948416c1db
Full Text :
https://doi.org/10.1051/m2an/2016044