Back to Search
Start Over
Molecular solids of actinide hexacyanoferrate: Structure and bonding
- Source :
- idUS. Depósito de Investigación de la Universidad de Sevilla, instname, IOP Conference Series: Materials Science and Engineering, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2010, 9, pp.012026. ⟨10.1088/1757-899X/9/1/012026⟩, IOP Conference Series: Materials Science and Engineering, 2010, 9, pp.012026. ⟨10.1088/1757-899X/9/1/012026⟩
- Publication Year :
- 2010
- Publisher :
- IOP Publishing, 2010.
-
Abstract
- International audience; The hexacyanometallate family is well known in transition metal chemistry because the remarkable electronic delocalization along the metal-cyano-metal bond can be tuned in order to design systems that undergo a reversible and controlled change of their physical properties. We have been working for few years on the description of the molecular and electronic structure of materials formed with [Fe(CN)$_6$]$^{n-}$ building blocks and actinide ions (An = Th, U, Np, Pu, Am) and have compared these new materials to those obtained with lanthanide cations at oxidation state +III. In order to evaluate the influence of the actinide coordination polyhedron on the three-dimensional molecular structure, both atomic number and formal oxidation state have been varied : oxidation states +III, +IV. EXAFS at both iron K edge and actinide L$_{III}$ edge is the dedicated structural probe to obtain structural information on these systems. Data at both edges have been combined to obtain a three-dimensional model. In addition, qualitative electronic information has been gathered with two spectroscopic tools : UV-Near IR spectrophotometry and low energy XANES data that can probe each atom of the structural unit : Fe, C, N and An. Coupling these spectroscopic tools to theoretical calculations will lead in the future to a better description of bonding in these molecular solids. Of primary interest is the actinide cation ability to form ionic-covalent bonding as 5f orbitals are being filled by modification of oxidation state and/or atomic number.
- Subjects :
- Lanthanide
010405 organic chemistry
Chemistry
Inorganic chemistry
Ionic bonding
Electronic structure
[CHIM.INOR]Chemical Sciences/Inorganic chemistry
010402 general chemistry
01 natural sciences
0104 chemical sciences
Delocalized electron
Molecular solid
Transition metal
Oxidation state
Molecule
Physical chemistry
Subjects
Details
- ISSN :
- 17578981 and 1757899X
- Database :
- OpenAIRE
- Journal :
- idUS. Depósito de Investigación de la Universidad de Sevilla, instname, IOP Conference Series: Materials Science and Engineering, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2010, 9, pp.012026. ⟨10.1088/1757-899X/9/1/012026⟩, IOP Conference Series: Materials Science and Engineering, 2010, 9, pp.012026. ⟨10.1088/1757-899X/9/1/012026⟩
- Accession number :
- edsair.doi.dedup.....57aab0ed0ab7998d415168d237f517fc