Back to Search Start Over

Nucleation versus instability race in strained films

Authors :
Marco Abbarchi
Thomas David
Kailang Liu
Jean Noël Aqua
Antoine Ronda
Luc Favre
Isabelle Berbezier
Peter W. Voorhees
Institut des Nanosciences de Paris (INSP)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP)
Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Laboratoire Pierre Aigrain (LPA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Physico-chimie et dynamique des surfaces (INSP-E6)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source :
Physical Review Materials, Physical Review Materials, American Physical Society, 2017, 1 (5), ⟨10.1103/PhysRevMaterials.1.053402⟩, Physical Review Materials, 2017, 1 (5), ⟨10.1103/PhysRevMaterials.1.053402⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Under the generic term ``Stranski-Krastanov'' are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with $exp(1/{x}^{4})$ for nucleation, while it only behaves as $1/{x}^{8}$ for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

Details

Language :
English
ISSN :
24759953
Database :
OpenAIRE
Journal :
Physical Review Materials, Physical Review Materials, American Physical Society, 2017, 1 (5), ⟨10.1103/PhysRevMaterials.1.053402⟩, Physical Review Materials, 2017, 1 (5), ⟨10.1103/PhysRevMaterials.1.053402⟩
Accession number :
edsair.doi.dedup.....57809382cc3dfb2141760d87a3b8af57