Back to Search Start Over

Sensitivity and specificity analysis of 2D small field measurement array: Patient‐specific quality assurance of small target treatments and spatially fractionated radiotherapy

Authors :
Luis Maria Larrea
Maria Carmen Banos-Capilla
Patricia Gil
Jose Domingo Lago-Martin
Source :
Journal of Applied Clinical Medical Physics
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Purpose The aim of this paper is to describe the tests carried out on a SRSMapCheck array, to verify its reliability and sensitivity for quality assurance (QA) of high gradient treatments as an alternative system to the use of high spatial resolution detectors, such as gafchromic film, whose processing requires meticulous and time‐consuming procedures. Methods In an initial step, general functionality tests were carried out to verify that the equipment meets the manufacturer's specifications. A study of the accuracy of the application of correction factors to compensate for variation in detector response due to dose rate, field size and beam angle incidence has been included. Besides, to assess the ability of the array to detect inaccurately delivered treatments, systematic errors corresponding to the deviation in the position of the leaves and the accuracy of the gantry position, have been introduced. Based on these results, an estimate of sensitivity and specificity values of the device has been completed. The final step included a study applied to high gradient treatment for real cases of spatially fractionated radiotherapy, where the results of SRSMapCheck measurements have been compared with gafchromic films. Results General commissioning tests meet the manufacturer's specifications. dose rate (DR) response variation is better than 1.5% and for DR above 50 MU/min better than 1%. The results for beam incidences are better than 1% for all gantry angles, including beam incidences parallel to the array. Field size response differences are within the range of ±1% for sizes up to 2 × 2 cm2, with a maximum value obtained of 3.5%, for 1 × 1 cm2. From the systematic error study, using a Gamma function Γ (2%, 2 mm), the detector presents a high specificity with a value greater than 90% at its lower limit, while its sensitivity has a moderate mean value of 81%. Sensitivity values increase above 86% when we apply a Gamma function Γ (2%, 1 mm) is applied. Finally, the study of actual cases comprises 17 patients, distributed into 11 lung tumors, 3 gynecological and 3 soft tissue tumors. The gafchromic film showed a lower passing rate with an average value of Γ (2%, 2 mm) = 94.1% compared to Γ (2%, 2 mm) = 98.6% reached by the measurements with the array. Conclusions Gamma function obtained with the SRSMapCheck array always presented a higher value than gafchromic film measurements, resulting in a greater number of plans considered correct. This fact, together with the sensitivity and specificity study carried out, allows us to conclude the recommendation that a restrictive metric must be established, in this way we will improve sensitivity, and therefore we will reduce the rate of incorrect plans qualified as correct. The characteristics of the equipment together with the correction factors applied, led to reliably performing acquisitions for complex treatments with multiple small targets in oblique rotational incidences. The spatial resolution of detectors allows the verification of high gradient dose plans such as those achieved in spatially fractionated radiotherapy (SFRT).

Details

ISSN :
15269914
Volume :
22
Database :
OpenAIRE
Journal :
Journal of Applied Clinical Medical Physics
Accession number :
edsair.doi.dedup.....5771d36b3d8a000f49a5712cf1d40332