Back to Search Start Over

A Real-Time Multi-Objective Predictive Control Strategy for Wheelchair Ergometer Platform

Authors :
Thierry Poulain
Viet Thuan Nguyen
Toufik Bentaleb
Gerald Conreur
Chouki Sentouh
Philippe Pudlo
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH)
Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)
Commande
Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN)
Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN)
Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)-Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN)
Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)
Source :
SMC, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Oct 2019, Bari, Italy. pp.2397-2404, ⟨10.1109/SMC.2019.8914220⟩
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

This paper describes a real-time multi-objective predictive control strategy for the wheelchair ergometer platform, which allows simulating the manual wheelchair (MWC) propulsion in virtual reality (VR). A nonlinear least-square method is used to build the predictive wheelchair ergometer model, where the trust-region-reflective algorithm is adopted. A detailed study of the wheelchair dynamics, and its performance on the rollers, and the frictions are presented. The main contribution is the implementation of a wheelchair ergometer model into a proposed controller in order to provide realistic navigation within the VR world by accurately detecting and tracking the rotation of the driving wheels. In particular, the proposed strategy has two objectives: 1) to generate force feedback (haptics) during the push phase (hand-to-rim contact); 2) assistance control to make the wheelchair movement more realistic in the immersive virtual environment during the recovery phase (hand-to-rim no contact). Various numerical examples emphasize the flexibility of the approach and experimental results confirm that the proposed controller successfully tracks the speed reference. It is also shown that the real-time tracking ability of the explicit MPC (eMPC) controller is superior to that of the PI controller.

Details

Database :
OpenAIRE
Journal :
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
Accession number :
edsair.doi.dedup.....5749217aa1b07cf0c5326fd1604fade3
Full Text :
https://doi.org/10.1109/smc.2019.8914220