Back to Search
Start Over
Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells
- Source :
- Small. 13:1701458
- Publication Year :
- 2017
- Publisher :
- Wiley, 2017.
-
Abstract
- Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm(-2) is achieved in the conventional N719 dye-I-3(-)/I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.
- Subjects :
- anodization
Materials science
Nanotechnology
02 engineering and technology
Electrolyte
010402 general chemistry
01 natural sciences
Biomaterials
chemistry.chemical_compound
Photovoltaics
General Materials Science
Electrical conductor
Photocurrent
Mesoscopic physics
titanium dioxide
Anodizing
business.industry
General Chemistry
Current collector
021001 nanoscience & nanotechnology
metal foams
0104 chemical sciences
chemistry
solar cells
Titanium dioxide
0210 nano-technology
business
Biotechnology
Subjects
Details
- ISSN :
- 16136810
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Small
- Accession number :
- edsair.doi.dedup.....562ff56a078f03fb71e92e54efda3cff
- Full Text :
- https://doi.org/10.1002/smll.201701458