Back to Search Start Over

Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells

Authors :
Yong-Hun Cho
Hyeji Park
Yun Sik Kang
Sun Ha Park
Seung Ho Yu
Heeman Choe
Jin Kim
Jung-Woo Choi
Yung-Eun Sung
David C. Dunand
Jun-Ho Yum
Hyelim Choi
Jin Soo Kang
Kyung Jae Lee
Jae-Yup Kim
Source :
Small. 13:1701458
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm(-2) is achieved in the conventional N719 dye-I-3(-)/I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.

Details

ISSN :
16136810
Volume :
13
Database :
OpenAIRE
Journal :
Small
Accession number :
edsair.doi.dedup.....562ff56a078f03fb71e92e54efda3cff
Full Text :
https://doi.org/10.1002/smll.201701458